

Shenzhen Jolly Technology CO.,LTD

Testing report

Sample Name : Disposable AED pad

Sample No .: JY - 20240125J 01 sample batch number : 20240112501

Production unit: Shenzhen Jolly Technology Co.,Ltd

Requesting unit: Shenzhen Jolly Technology Co.,Ltd - Development Department

Testing purpose: Verify sample performance meets requirements

Sample delivery time: 2024-01-18

Completion time: 2024-01-25

r							
	Test results						
serial numb er	Test items	judgement standard	quantity	determination			
1	structure appearance	The appearance is good, and there is no looseness in the electrode connection;	2PCS	PASS			
2	dielectric strength	No breakdown or arc flash	2PCS	PASS			
3	Contact resistance	The impedance of the 10Hz signal should not exceed $3k\Omega$, $30kH2$	2PCS	PASS			
		The impedance should be less than 10Ω ;					
4	defibrillation test	The temperature rise does not exceed 15 $^\circ\!\!\!\!^\circ$	2PCS	PASS			
5	Stay sticky	Fitting time>30s	2PCS	PASS			
6	Defibrillation electrode s and cables	The fixed end of the cable is not loose or damaged, and each conductor	2PCS	PASS			
	Capies	The wire should not have 10% of the total core wires broken;					

Chief Inspector:

批准:

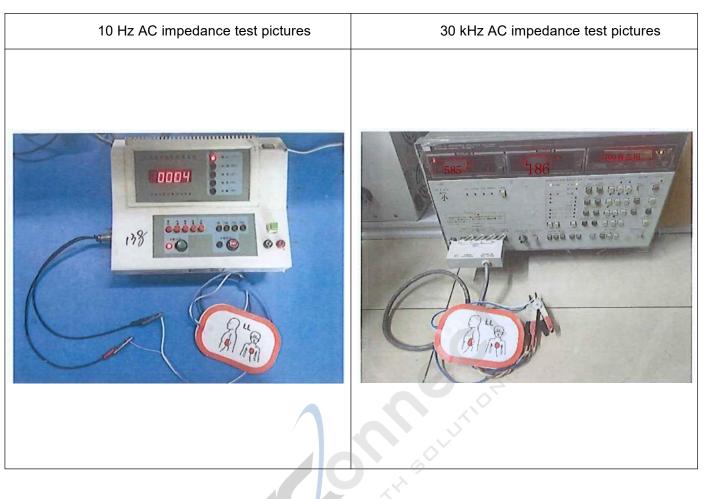
1.Appearance and structure inspection

1.1 Testing equipment	Visually				
1.2 Detection environment	Laboratory temperature: 26.8 $^\circ C$, humidity: 43%				
1.3 Testing The appearance is good, and there is no loose connection between the standards pads and cables;					
1.4 Detection In normal temperature environment, visually inspect the appearance and structure product . The product should meet the requirements.					
1.5 Number of tests	er of 2PCS				
1.6 Test data					
serial number	Test Results	determination			
1#	Appearance is good, cable connections are not loose	PASS			
2#	Appearance is good, cable connections are not loose PASS				
1.7 Test conclus	ion: The appearance and structure are good and the test is qualified.				
1.8 Test picture	3				
	Sample Pictures				

5-1 4-10

2. Dielectric strength

2.1 Testing Pressure tester equipment						
2.2 Detection Laboratory temperature: 26.8 °C, humidity: 43%					%	
2.3 Testing No breakdown or arc flash standards						
2.4 Detection methodsUse a metal foil about 100mm long to wrap test voltage between the core wire and the DC5000V at a constant speed within 10 se 1min. During the test, monitor the leakage metal apacting. If it is <0.25mA, the insulation				e wire and the me d within 10 secor r the leakage cur	etal foil, increase the voltage nds, and then maintain the te	to est. and the
		500MΩ		·		
2.5 Number of tests	of	2PCS				
2.6 Test data					C . D AIT	
serial number	Tes volt	t age(V)	Test time(s)	Leakage current(mA)	Test Results	determination
1#	Γ	DC5000	60	0.0	No breakdown or arc flash	PASS
2# DC5000 60 0.0 No breakdow flash			No breakdown or arc flash	PASS		
2.7 Test conclusion: There was no arc flash breakdown during the test, the leakage current was 0.0 mA , and the test was qualified;						
2.8 Test pictures						
Picture after test						



3. Contact resistance

3.1 Testing equipment		Electrode electrical performance tester, impedance tester				
3.2 Detection environment		Laboratory tempera	ture: 26.8 °C, humidity: 439	6		
3.3 Testing standards		No breakdown or ar	rc flash			
3.4 Detection methods Connect the electrodes in a gradient flow 100μ A peak-to-peak flows, the exceed $3k\Omega$, and the impedation			flows, the impedance corr	esponding to the 10Hz sigr	nal should not	
		Repeat the test at 3	0kHz			
3.5 Number of 2PCS tests						
3.6 Test data						
serial number	10 (Ω) Hz AC impedance !)	30 kHz AC impedance (Ω)	Test Results	determination	
1#		4	0.59	Impedance is within standard range	PASS	
2#		5	0.73	Impedance is within standard range	PASS	
3.7 Test conc qualified;	clusic	on: The AC impedanc	ce of 10 Hz and 30 kHz is	within the standard range,	and the test is	
3.8 Test pictu	ires					

4. Defibrillation test

4.1 Testing LIFEPAAK 20 defibrillator/monitor, FL equipment			0 <mark>defib</mark> rillator/monito	r, FLUKE defibrillat	ion pacing analyzer, AM 801
4.2 Detection environment		Laboratory te	emperature: 26.8 °C,	humidity: 43%	
4.3 Testing standards		After 15 cons exceed 15℃		llation energy disch	narges, the temperature rise does not
		1. Turn on th	e FLUKE defibrillatio	on pacing analyzer a	and adjust it to the defibrillation mode.
4.4 Detection methods		2. Attach the defibrillation electrode pads to the surface of the steel plate, and use a wire clip to connect the steel plate to the FLUKE defibrillation pacing analyzer. Connect, the electrode pad plug is connected to the LIFEPAAK 20 defibrillation/monitor interface.			
		3. Turn on the LIFEPAAK 20 defibrillator/monitor, press the "Analyze" button in AED mode, and the defibrillator will automatically Automatically analyze whether defibrillation is progressing normally and operate according to the prompts.			
4.5 Number of tests		2PCS			
4.6 Test data					
		first discharge energy (j)	The 15th discharge energy (j)	Initial temperature(℃)	Temperature after the determina 15th discharge (℃)tion

1#	354.4	352.6	27.0	27.2	PASS
----	-------	-------	------	------	------

2#	2# 356.6 353.1			27.2	PASS	
4.7 Test cond test is qualifie	clusion: After 15 tim ed;	es of discharge usin	g 360J energy, th	e temperature rise is 0.2°C	, and the	
4.8 Test pictures						
	Test layout d	iagram	Initial tem test pictur	perature and first discharge es	eenergy	
Tempera pictures	iture and 15th discha after test	arge energy test	0	ALD ALLANS		
			EALTHEDLU	TIDE		

5. Stay sticky

5. Stay sticky	× 5 ⁺
5.1 Testing equipment	Weights, stopwatch
5.2 Detection environment	Laboratory temperature: 26.8 °C, humidity: 43%
5.3 Testing standards	The time for the electrode pad to completely separate from the rigid plate should be >30s
5.4 Detection methods	With the steel plate perpendicular to the ground, stick the electrode sheet on the steel plate, lift a weight of 1kg, and observe The time for the electrode piece to separate from the test plate
5.5 Detection quantity	2PCS
5.6 Test data	

serial number	Lifting weight(kg)	Test time(s)	Test Results	determi nation
1#	1	31	After lifting for 31 seconds, the sample did not detach.	PASS

2#	1	31	After lifting for 31 seconds, the sample did not detach.	PASS

5.7 Test conclusion: After lifting a 1kg weight for 31 seconds, the electrode pad sticking position is not loose, and the test is qualified. 5.8 Test pictures Pictures under test C o E R E

6. Defibrillation electrodes and cables

6.1 Testing Bending testing machine equipment					
6.2 Detection environmentLaboratory temperature: 26.8 ℃, humidity: 43%					
				nductor	
 6.4 Detection methods 5.4 Detection methods Use a bending testing machine to test, the bending angle is 2×45°, 30 times/min, hang a weight at least 300mm from the bending position, where the weight is the weight of the product (the product is about 62g, the lifting weight is 100g), number of bends 					
	is 100 times;	during the test, after	bending 50 times, rotate the cable 90°C at the	e same	
	bending poin	t, and then			
	Bending 50	times;			
f	2PCS				
		Number of bends (s)	Test Results	determ ination	
	100	100	Good structural appearance	PASS	
	100	100	Good structural appearance	PASS	
lusior reaka	n: After bending ge, and the tes	g 100 times, the struc st is qualified.	ctural appearance is good, and the internal cor	e copper	
res					
	Pictures und	er test	Number of trials		
			R 5 Counter6 COUNTER6		
Disassembled view of bending position					
	lusior reaka ires	Laboratory te Laboratory te Should not ha Use a bendir hang a weigh weight of the bends is 100 times; bending poin Bending 50 f 2PCS Lifting weight (g) 100 100 Lusion: After bending reakage, and the tes res Pictures under Disassembled v	Laboratory temperature: 26.8 °C, There should be no looseness or should not have 10% of the total of looseness or should not have 10% of the total of looseness or weight of the product (the product bends is 100 times; during the test, after bending point, and then Bending 50 times; f 2PCS Lifting weight (g) Number of bends (s) 100 100 100 100 100 100 Interesting 100 times, the struct reakage, and the test is qualified. Pictures under test Pictures under test Disassembled view of bending	Laboratory temperature: 26.8 °C, humidity: 43% There should be no looseness or damage at the fixed end of the cable. Each conshould not have 10% of the total core wires broken. Use a bending testing machine to test, the bending angle is 2×45°, 30 times/mir hang a weight at least 300mm from the bending position , where the weight is the weight of the product (the product is about 62g, the lifting weight is 100g), numberds is 100 times; during the test, after bending 50 times, rotate the cable 90°C at the bending point, and then Bending 50 times; f 2PCS Lifting weight (g) Number of bends (s) 100 100 Good structural appearance Interest Number of trials Pictures under test Number of trials F 5 Counter6 COUNTER6 Start 6,STARTG Start 6,STARTG Start 6,STARTG Start 6,STARTG Start 6,STARTG Start 6,STARTG Start 6,STARTG Start 6,STARTG Start 6,STARTG	

	blank
--	-------